LOUSIANA It. U.

69 72532

NASA CR 100859

A NONLINEAR HILLE-YOSIDA-PHILLIP HEOREM COPY by J. R. Dorroh

Let X denote a real or complex Banach space. By a nonexpansive semi-group, we will mean a strongly continuous semi-group $\{T(t); t \geq 0\}$ of nonexpansive transformations from X into X. The strong infinitesimal generator A of such a semi-group $\{T(t); t \geq 0\}$ is defined by $Ax = \lim_{h \to 0} A_h x$, with domain consisting of all x for which this limit exists, where $A_h x = (1/h)[G(h)x - x]$ for x in X and h > 0. The weak infinitesimal generator is defined similarly, using the weak limit in place of the strong limit. We give a necessary and sufficient condition, in the case that X is a Hilbert space, that a densely defined operator in X be the strong infinitesimal generator of a nonexpansive semi-group. This may be considered a nonlinear analogue to the Hille-Yosida-Phillips Theorem, see [5, Theorem 13, p.624] or [6, Section 12.3]. Our other results assume either that X* is uniformly convex or that X and X* are uniformly convex. These results consist of sufficient conditions for an operator in X to determine a nonexpansive semi-group in certain ways, as well as some continuity properties of derivatives of nonexpansive semigroups. For other nonlinear analogues to the theory of linear semi-groups, see [2], [3], [4], [7], [8], [10], [11], and [12]. The main tool of proof in this paper is the notion of a multivalued dissipative operator as used by Komura in [8]. For the connection between linear dissipative

¹ This research was partially supported by N.A.S.A. grant number NGR-19-001-024.

operators and linear contraction semi-groups, see [9] by Lumer and Phillips. Section 1 contains the statements of the main results and a discussion of them. Section 2 contains two lemmas about dissipative operators, and Section 3 contains the proofs of the main results.

1. The main results.

Definition 1. The <u>duality map</u> F from X into X* is defined by $Fx = \{x^* : ||x^*|| = ||x|| \text{ and } \langle x, x^* \rangle = ||x||^2 \}$. It is known that F is single valued if X* is strictly convex, and that F is uniformly continuous on bounded sets if X* is uniformly convex, see [7, Lemma 1.2].

By a <u>multivalued operator in X</u>, we mean a transformation A from a subset of X into the collection of all subsets of X. We (somewhat loosely) include the operators (i.e., single valued operators) among the multivalued operators.

A multivalued operator A in X is said to be dissipative if

Re
$$\langle x^i - y^i, f \rangle < 0$$

for x, $y \in D(A)$, $x^{\dagger} \in Ax$, $y^{\dagger} \in Ay$, and $f \in F(x - y)$.

Remark. If $\{T(t); t \ge 0\}$ is a nonexpansive semi-group, then both the weak and the strong infinitesimal generators of $\{T(t)\}$ are dissipative. To see this, let t > 0, x, $y \in X$, and $f \in F(x - y)$. Then

Re
$$\langle (T(t)x - x) - (T(t)y - y), f \rangle =$$

Re $\langle T(t)x - T(t)y, f \rangle - ||x - y||^2 \le 0.$

Lemma 1. Suppose A is a multivalued dissipative operator in X.

Then I - A has a single valued nonexpansive 'inverse' defined on the

''range'' R(I - A) of I - A: $R(I - A) = \{y: y \in x - Ax \text{ for some } x \in D(A)\},$ $(I - A)^{-1}y = \{x \in D(A): y \in x - Ax\}.$

If R(I - A) = X, then Ax is a closed convex set for each x in D(A).

Proof. To prove the first statement, let $x, y \in D(A)$, $x^i \in Ax$, $y^i \in Ay$, $z = x - x^i$, $w = y - y^i$, and $f \in F(x - y)$. Then

$$||z - w|| \cdot ||x - y|| \ge \text{Re}\langle z - w, f \rangle =$$

 $||x - y||^2 - \text{Re}\langle x' - y', f \rangle \ge ||x - y||^2.$

Thus, $||x - y|| \ge ||z - w||$.

To prove the second statement, notice that the operator A^* defined on D(A) by letting A^*x be the closed convex hull of Ax is also dissipative, and thus cannot properly extend A if R(I - A) = X.

Definition 2. If X is uniformly convex and A is a multivalued dissipative operator in X such that R(I - A) = X, then we define T_A , the trace of A, on D(A) by letting $T_A x$ be the point of Ax which is nearest the origin. An operator B in X is said to be a trace operator if it is the trace of such an operator A; B is said to be a maximal trace operator if B is a trace operator and no trace operator properly extends B.

Theorem 1. Suppose X* is uniformly convex and A is a densely defined multivalued dissipative operator in X such that R(I - A) = X. Then there is a unique nonexpansive semi-group $\{T(t); t \geq 0\}$ such that:

i) If $x \in D(A)$, then $T(t) x \in D(A)$ a.e. on $[0, \infty)$, $T(\cdot)x$ is strongly differentiable

a.e. on
$$[0, \infty)$$
, and
$$(d/dt) \ T(t)x \in A \ T(t) \ x$$

a.e. on $[0, \infty)$.

ii) If $x \in D(A)$, then (d/dt) T(t)x is Bochner integrable on bounded intervals, and

$$T(t) x = x + \int_0^t (d/d\xi) T(\xi)x d\xi$$
 for $t > 0$.

Furthermore, it is true that if $x \in D(A)$ and $y \in Ax$, then $||(d/dt) T(t)x|| \le ||y||$

a.e. on $[0, \infty)$.

Theorem 2. Suppose X and X* are uniformly convex and B is a densely defined trace operator in X. Then there is unique nonexpansive semi-group $\{T(t); t \geq 0\}$ whose strong infinitesimal genreator is an extension of B. Furthermore, if $x \in D(B)$, then $T(t)x \in D(B)$ for $t \geq 0$, and $BT(\cdot)x$ is strongly continuous from the right on $[0, \infty)$. If R(I - B) = X (which makes B a trace operator), then B is the strong and the weak infinitesimal generator of $\{T(t)\}$, and $BT(\cdot)x$ is weakly continuous on $[0, \infty)$ for $x \in D(B)$.

Theorem 3. If X is a Hilbert space, and B is a densely defined operator in X, then B is the strong infinitesimal generator of a nonexpansive semi-group if and only if B is a maximal trace operator.

Remarks. Theorem 1 is primarily a generalization (somewhat trivial) and a sharpening (nontrivial) of Komura's Theorem 4 in [8]. The semi-group {T(t)} is constructed by Komura's method, but we show that the differential equation

$$(d/dt) T(t)x \in A T(t)x$$

is satisfied in a much stronger sense than that established by Komura.

Theorem 2 shows that a densely defined trace operator B is almost as good as an infinitesimal generator; not only is there a unique non-expansive semi-group $\{T(t)\}$ whose strong infinitesimal generator extends B, but

$$T(t)x = x + \int_{0}^{t} B T(\xi) x d\xi,$$

$$D_{r}T(t)x = B T(t) x$$

for $x \in D(B)$ and $t \ge 0$, where D_r denotes the strong right derivative. The last statement of Theorem 2 partly clears up points raised by Browder [2, p. 870] and Kato [7, Remark 2 after Theorem 3].

The Hille-Yosida-Phillips Theorem for linear semi-groups characterizes semi-group generators; whereas our Theorem 3 characterizes densely defined generators (in Hilbert space at that), and we do not know that every nonexpansive semi-group has a densely defined strong infinitesimal generator. Nevertheless, Theorem 3 is the only theorem of this type that we know of. It is somewhat interesting when applied to the one dimensional real case: a nonincreasing function B from the reals into the reals is the strong infinitesimal generator of a non-expansive semi-group if and only if

$$|B(x)| = min(|B(x-)|, |B(x+)|)$$

for all real x.

2. Lemmas on dissipative operators.

Lemma 2. Suppose Y is a Banach space and E is a multivalued dissipative operator in Y such that R(I - E) = Y. Let G denote the duality map from Y into Y*. Suppose:

- i) $\{u_n\} \subseteq D(E)$,
- ii) $x_n \in E u_n$ for each n,
- iii) $\lim_{n \to \infty} u_n = u$, w- $\lim_{n \to \infty} x_n = x$, and
- iv) if $v \in Y$, then there exists $\{f_n\} \subseteq Y^*$ such that $f_n \in G(v u_n) \text{ for each } n \text{ and } \lim f_n \in G(v u).$ Then $u \in D(E)$ and $x \in E$ u. If Y^* is uniformly convex, then (iv) is superfluous.

Proof. The proof requires only obvious modifications of the proof of [7, Lemma 2.5].

Lemma 3. Suppose X* is uniformly convex, and let $Y = L_2([0, 1], X)$, the space of (equivalence classes of) strongly measurable functions f from [0, 1] into X such that $||f(\cdot)||^2$ is integrable, with

$$||f||_2 = \left[\int_0^1 ||f(t)||^2 dt\right]^{1/2}$$
.

Then Y is reflexive, the duality map G from Y into Y* is single valued, and Y* is isometrically isomorphic to L_2 ([0, 1], X*) with the action

$$\langle f, g \rangle = \int_0^1 \langle f(t), g(t) \rangle dt$$

of L₂([0, 1], X*) on Y.

Now suppose A is a multivalued dissipative operator in X such that R(I-A)=X. Define the multivalued operator E in Y by $D(E)=\{f\in Y: f(t)\in D(A) \text{ a.e. and there exists } g\in Y \text{ such that } g(t)\in Af(t) \text{ a.e.}\},$

Ef = $\{g \in Y : g(t) \in Af(t) \text{ a.e.}\}.$

Then E is a multivalued dissipative operator in Y, and R(I - E) = Y. Let C([0, 1], X) denote the space of continuous functions from [0, 1] into X. If

- i) $\{\alpha_n\} \subseteq C([0, 1], X) \cap D(E)$,
- ii) $\beta_n \in \mathbb{E} \alpha_n$ for each n, and
- iii) $\{\alpha_n\}$ converges uniformly to α and $\{\beta_n\}$ converges weakly in Y to $\beta \in Y$,

then $\alpha \in D(E)$ and $\beta \in E \alpha$.

Proof. If follows from [1, Theorem 3.2] and the appendix of [8] that Y is reflexive and that Y* has the representation claimed. Consider the duality map G as being from Y into $L_2([0, 1], X^*)$. Let $f \in Y$ and $g \in Gf$. Then

$$\left| \left| f \right| \right|_{2}^{2} = \int_{0}^{1} \langle f(t), g(t) \rangle dt$$

$$\int_{0}^{1} |f(t)| |\cdot| |g(t)| |dt \le ||f||_{2} ||g||_{2} = ||f||_{2}^{2}.$$

Therefore .

$$\int_{0}^{1} ||f(t)|| \cdot ||g(t)|| dt = ||f||_{2} ||g||_{2}, ||g||_{2} = ||f||_{2},$$

so that ||g(t)|| = ||f(t)|| a.e. Therefore $\langle f(t), g(t) \rangle = ||f(t)||^2$ a.e., so that $g(t) \in F f(t)$ a.e.

It now follows readily that the multivalued operator E is dissipative. The fact that R(I - E) = Y follows from the observation that if $g \in Y$, then the function f defined by $f(t) = (I - A)^{-1} g(t)$ is also in Y, and is in D(E).

To prove the last statement of this lemma, suppose that $\{\alpha_n\} \subseteq C([0,\ 1],\ X), \text{ and that } \{\alpha_n\} \text{ converges uniformly to } \alpha \text{ on } [0,\ 1] \text{ . Let}$

 $k = \sup\{||\alpha_n(t)||: t \in [0, 1], n = 1, 2, 3,...\}.$

If $v \in Y$, then the sequence $\{\alpha_n - v\}$ is pointwise dominated by $k + ||v(\cdot)||$; thus, so is the sequence $\{G(\alpha_n - v)\}$. Also, since $\{\alpha_n - v\}$ converges pointwise to $\alpha - v$, $G(\alpha_n - v)$ converges pointwise to $G(\alpha - v)$ and thus converges strongly in $L_2([0, 1], X^*)$ to $G(\alpha - v)$. The rest follows immediately from Lemma 2.

3. Proof of the main theorems.

Proof of Theorem 1. First, we prove that there is at most one nonexpansive semi-group satisfying (i) and (ii). If $\{S(t)\}$ and $\{T(t)\}$ are two such semi-groups, and they agree on D(A), then they agree everywhere. Let $x \in D(A)$, $f(t) = ||T(t)x - S(t)x||^2$. Then f is absolutely continuous, and by [7, Lemma 1.3], $f'(t) = 2\text{Re } \langle (d/dt)T(t)x - (d/dt)S(t)x$, $F(T(t)x - S(t)x)\rangle$

a.e., so that f'(t) is nonpositive a.e., and thus f(t) = 0 for $t \ge 0$.

The following claim can be established by an argument almost exactly like Komura's argument for Theorem 4 of [8]. Komura's theorem is for a Hilbert space, but the argument generalizes; to see how the continuity of the duality map can be used as a substitute for the Hilbert space structure, see Kato's proof of [7, Lemma 4.3].

There is a nonexpansive semi-group $\{T(t); t \geq 0\}$ having the following properties. Let $x \in D(A)$, $y \in Ax$. There are two sequences $\{f_n\}$, $\{g_n\}$ in C([0, 1], X) each converging uniformly to $T(\cdot)$ x on [0, 1] such that:

- i) $g_n(t) \in D(A)$ for $0 \le t \le 1$ and n = 1, 2, ...,
- ii) f_n (t) $\in A$ g_n (t) for $0 \le t \le 1$ and n = 1, 2, ...,
- iii) f_n is continuous on [0, 1] for n = 1, 2, ..., and
- iv) $||f_n'(t)|| \le ||y||$ for $0 \le t \le 1$ and n = 1, 2, ... (To make the connection with Komura's argument for [8, Theorem 4], let $f_n(t) = T_t^{(n)} x_n$, $g_n(t) = (I (1/n)A)^{-1} f_n(t)$.)

The sequence $\{f_n'\}$ is bounded in $Y = L_2([0, 1], X)$, and thus some subsequence $\{f_m'\}$ converges weakly to an element β of Y. Let $\alpha_n = g_m$, $\beta_n = f_m'$, $\alpha = T(\cdot) x$. Then $\{\alpha_n\} \subseteq D(E) \cap C([0, 1], X)$, $\beta_n \in E$ α_n for each n, $\{\alpha_n\}$ converges uniformly to α , and $\{\beta_n\}$ converges weakly to β . Therefore, $\alpha \in D(E)$ and $\beta \in E$ α . Also, $\|\beta(t)\| \le \|y\|$ a.e., since the set of all functions in Y satisfying this condition is convex and strongly closed, thus weakly closed.

If $x^* \in X^\circ$, $0 \le t \le 1$, and $g(\xi) = \chi_{[0,t]}(\xi)x^*$ for $0 \le \xi \le 1$, then $g \in L_2([0,1], X^*)$, and

$$\langle f_{m_n}(t) - f_{m_n}(0), x^* \rangle = \int_0^1 \langle \beta_n(\xi), g(\xi) \rangle d\xi$$

$$\langle \alpha(t) - \alpha(0), x^* \rangle = \int_0^t \langle \beta(\xi), x^* \rangle d\xi,$$

$$\alpha(t) = \alpha(0) + \int_0^t \beta(\xi) d\xi.$$

Thus,

$$\alpha^{i}(t) = (d/dt) T(t)x = \beta(t) \in AT(t) x$$

and

$$||(d/dt) T(t)x|| = ||\beta(t)|| \leq ||y||$$

a.e. on [0, 1]. This argument could have been given for any bounded interval, and hence the conclusions hold on $[0, \infty)$.

Proof of Theorem 2. Suppose B is the trace of the densely defined multivalued dissipative operator A in X, with R(I-A)=X. Let $\{T(t),\ t\geq 0\}$ denote the nonexpansive semi-group associated with A by Theorem 1 and let A_0 denote the strong infinitesimal generator of $\{T(t)\}$. We will show that $A_0 \supset B$.

Let $x \in D(B) = D(A)$. Then by Theorem 1, $||(d/dt) T(t)x|| \le ||Bx||$ a.e. Let $N \subseteq [0, 1]$ be a set of measure zero such that $T(t)x \in D(A)$, $(d/dt) T(t)x \in AT(t)x$, and $||(d/dt) T(t)x|| \le ||Bx||$ for $t \in M = [0, 1] \setminus N$. Let $\{t_n\} \subseteq M$ be such that $t_{n+1} \le t_n$ for all n and $\lim_{n \to \infty} t_n = 0$. Let f(t) = T(t)x for $t \ge 0$. Then $\{f'(t_n)\}$ is a bounded sequence in X and thus has a subsequence $\{f'(t_m)\}$ which converges weakly to some element z of X. Then by Lemma 2, $z \in Ax$.

Thus,

$$\begin{aligned} ||\operatorname{Bx}|| &\leq ||z|| \leq \lim \inf ||f'(t_{m_n})|| \leq \\ &\lim \sup ||f'(t_{m_n})|| \leq ||\operatorname{Bx}||. \end{aligned}$$

Thus,

$$\lim ||f'(t_{m_n})|| = ||Bx|| = ||z||,$$

so that

$$z = Bx = \lim_{n \to \infty} f'(t_n)$$
.

Thus,

$$\lim_{(t\to 0, t\in M)} (d/dt)T(t)x = Bx.$$

This, together with (ii) of Theorem 1, shows that $x \in D(A_0)$ and $A_0x = Bx$.

Now let $x \in D(B) = D(A)$ and $0 \le t \le 1$. Let $\{t_n\} \subseteq M$ be such that $t_{n+1} \le t_n$ for all n and $\lim_n t_n = t$. Again, let $f(\xi) = T(\xi)x$ for $0 \le \xi \le 1$. Then $\{f'(t_n)\}$ is a bounded sequence in X and thus has a subsequence $\{f'(t_m)\}$ which converges weakly to an element v of X. By Lemma 2, $f(t) \in D(A) = D(B)$, and $v \in A f(t)$. The argument of the preceeding paragraph shows that $v = BT(t)x = A_0T(t)x$.

Now that we know that $T(t)x \in D(B)$ for $x \in D(B)$ and $0 \le t < 1$, the same argument shows that $BT(\cdot)x$ is strongly continuous from the right on [0, 1).

The interval [0, 1] could be replaced with any bounded interval in this argument, so if $x \in D(B)$, then $T(t)x \in D(B)$ for all $t \ge 0$, and $BT(\cdot)x$ is strongly continuous from the right on $[0, \infty)$.

If R(I - B) = X, then B has no proper dissipative extension, and thus is the strong and weak infinitesimal generator of $\{T(t)\}$. The fact that $BT(\cdot)x$ is weakly continuous on $[0, \infty)$ for $x \in D(B)$ in this case was proved by Kato [7, Lemma 4.5].

Proof of Theorem 3. Now suppose that X is a Hilbert space. Suppose that B is a densely defined maximal trace operator. Let $\{T(t); t \geq 0\}$ be the nonexpansive semi-group determined by B, and let A_0 denote the strong infinitesimal generator of $\{T(t)\}$. By [8, Theorem 2], A_0 has an extension to a multivalued dissipative operator A such that R(I-A)=X. The semi-group associated with A by Theorem 1 is $\{T(t)\}$, see [8, Theorem 5]. By the argument of Theorem 2, A_0 extends the trace T_A of A. But $D(T_A)=D(A) \supset D(A_0) \supset D(T_A)$, and therefore $A_0=T_A \supset B$. Since B is a maximal trace operator, $B=A_0$.

Now suppose that $\{T(t); t \ge 0\}$ is a nonexpansive semi-group with densely defined strong infinitesimal generator A_O . The argument of the preceeding paragraph shows that A_O is a trace operator. Suppose B is a trace operator which extends A_O , say $B = T_A$, where A is a multivalued dissipative operator in X such that R(I - A) = X. Let $\{S(t); t \ge 0\}$ be the nonexpansive semi-group associated with A by Theorem 1, and let B_O denote the strict infinitesimal generator of $\{S(t)\}$. Again, by the argument for Theorem 2, we have $B_O \supset T_A = B \supset A_O$. The uniqueness argument given for Theorem 1 shows that $\{S(t)\}$ and $\{T(t)\}$ agree on D(A), which is dense, so $\{S(t)\} = \{T(t)\}$, and $B_O = A_O$. Therefore $B = A_O$, and A_O is a maximal trace operator.

References

- 1. S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Annals of Math., 39(1938), 913-944.
- 2. F. E. Browder, Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces, Bull. Amer. Math. Soc., 73(1967), 867-874.
- J. R. Dorroh, Semigroups of nonlinear transformation, Michigan Math.
 J., 12(1965), 317-320.
- 4. _____, Some classes of semi-groups of nonlinear transformations and their generators, Proc. Math. Soc. Japan, to appear.
- 5. Dunford and Schwartz, Linear operators, Part I, Interscience, 1958.
- 6. Hille and Phillips, Functional analysis and semi-groups, Rev. ed.,
 Amer. Math. Soc. Collog. Publ., v. 31, 1957.
- 7. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19(1967), 508-520.
- 8. Y. Komura, Nonlinear Semi-groups in Hilbert space, J. Math. Soc. Japan, 19(1967), 493-507.
- 9. G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math., 11(1961), 679-698.
- 10. J. W. Newberger, An exponential formula for one-parameter semi-groups of nonlinear transformations, J. Math. Soc. Japan, 18(1966), 154-157.
- 11. S. Oharu, Note on the representation of semi-group of non-linear operators, Proc. Japan Academy, 42 (1967), 1149-1154.
- 12. D. Rutledge, A generator for a semigroups of nonlinear transformations, to appear in Pacific J. Math.